Lecture 15

Baice Meascrability. Recall the wotion of an ideal of sabsets of a given ut $X: \tilde{I} \in P(X)$ it it's Closed dommand nalar \leq und dosed "uprord" undo timite unions, e.g. The ickeal ot ficine sets, the ided of whene dasse seds.
We also defined σ rideal as an ideal closeel ubles cthl unions, ig. The σ-ileal of ithl sets, the σ-ideal of weagie sets.

Det. For a at X and an ideal τ, we dotive an es. nel. I on $P(x)$ as follows: for $A, B \leq X$,

$$
\begin{equation*}
A={ }_{I} B: \Leftrightarrow A \Delta B:=(A \backslash B) \cup(B \backslash A) \in \pi \tag{1/C}
\end{equation*}
$$

Ukin. II is an ey. nel. (is transitice).
Proof. Let $A=I B=I C$, and the $A=I C$

$$
A \Delta C=(A \Delta B))(B \Delta C) \leq(A \Delta B) \cup(B \Delta C) \in I_{2}
$$

* realize Kt $(P(x), \Delta, \varnothing)$ is an abelian group ionomplic to $\left(2^{x}, \oplus_{2}, 0\right)$.

Let x be a metric space (wore generally, a top cpacel. For the σ-ideal tot wage sub, instead of writing $A=I B$, we wite $A=* B$.

Def. A subset $B \subseteq X$ is called Baire measurable (BM) if $B={ }^{*}$ ar open set.

Prop Baine meas. sets fore a σ-algebra, ie. ane chased umber complements and coil unions (here also octal intersections and subtraction).
Plot. For applevents, if $A=* U, U$ open, Than $U=+\bar{U}$ be $\bar{U}=U V \partial U$ al ∂U is ul. Thus, $A=\bar{G}$ so $A^{c}={ }^{*}(\bar{u})^{c}$ dish is open. For toll minn), let $A_{n}=U_{n}$, so $\bigcup_{n} A_{c}=* \bigcup_{n} U_{n}$ base $\left(\bigcup_{n} A_{n}\right) \Delta\left(\bigcup_{n} U_{n}\right) \leq \bigcup_{n}\left(A_{n} \Delta U_{n}\right)$.

In particular, the σ-algebra BM of Baire were, sets contains all Boned sets:

Def. In a metric space (more gen. a top space), the Bevel
o-algetra is the smallest σ-algebra butaining all open sets. This is jut the intersection of all o-algebras coutainion the open seth. Die setts is Dir o.alyhen are called Bowel.

Examples.

$$
\begin{array}{lll}
\text { dopes open }=\Sigma_{1}^{0} & F_{\sigma} & \Sigma_{2}^{0} \\
& F_{\sigma \delta}=\Sigma_{3}^{0} \\
& & \Pi_{2}^{0}
\end{array}
$$

More generally: in metric spaces, we have open $\leq F_{r}$, so:

$$
\begin{aligned}
& \operatorname{drgen}-\Delta_{1}^{0}+\sum_{1}^{0} \& \Delta_{2}^{0} y_{k} \sum_{2}^{0}{ }_{c} \Delta_{3}^{0} \sum_{x} \sum_{3}^{0} \ldots \sum_{\mathbb{N}}^{0} \\
& f \pi_{1}^{0}{L_{x}}^{\Delta_{2}} \subseteq \pi_{2}^{0} C_{x} \Delta_{3} \leftarrow \Pi_{3}^{0} \\
& \pi_{\xi}^{0}:=\neg \sum_{\xi}^{0}:=\left\{A \leq X=A^{c} \in \Sigma_{\xi}^{0}\right\} \\
& \underbrace{\pi_{i N} c_{\pi} \cdots}_{\omega_{1}} \\
& \Sigma_{\xi}^{0}:=\left\{A \leq X: A=\bigcup_{u} A_{n} \text {, derek } A_{4} \in \pi_{i^{\prime}}^{0}\right. \text { for sole } \\
& \left.s^{\prime}<!\right\}
\end{aligned}
$$

$\omega_{1}:=$ the smallest \quad anctbl ordinal.
th tact, this hiecaicly is sticict in Polish spaces.
All there ats above are Barre weasucable.

Prop. Let X be a urtic (top) ypoe d $B \subseteq X$. TFAE:
(1) B is $B M$, i.e. $B=$ an open set $C l$.
(2) $B=G \cup M$, here G is $G r d M$ is neagre.
(3) $B=F \backslash M$, dhere F is $F_{\sigma} d M$ is waggre.

Parf. (2) \Rightarrow (1) al $(3) \rightarrow$ (1) bollous from the facts ht $G \delta$ al F_{σ} nts are $B M$.
$F_{r r}(1) \Rightarrow(2)$ ol $(1) \Rightarrow(3)$, let \tilde{M} be an "upgraded" F_{σ} mengee sot coutaining, $B A U$, and pat $G:=U) \tilde{M}$ and $F:=U \cup \tilde{M}$.

Aerark. In a $2^{2 d}$ ctbl spece, there are \leq continnann ang Bonel sets, hile in say \mathbb{R} of ary other ancifl Polich space, thare we $2^{\text {baticaname anay meagre }}$ lad hence BM) sets beare ever cubset of ucajre is veagre. Thess, there are rany more BM setr than Bonel sets.

Localization. Let X se a nedric (top.) ppace al U open. We say tht a st $B \leq X$ is conengre in U (or $U_{\text {is }} 100 \%$) if $B \wedge C$ is coneagre in U, equiv. $U(B$ is neagre. We denote Mis by $U \Perp B$. \rightarrow foces

Localizction (100% leman). For a $B M$ set $B \subseteq X$, if it is nonmengel, then it is comengre in sone neneapty open sot U.
Pooot: $B=* U$ so $U \backslash B$ is majec, hence B is coneagre in U. U can'd be \varnothing bere B is nonnengre.

Obs. If U oper $1+B$ and $V \leq U$ open, then V 隹 B.
Renark. The last ohservation is one of the mais clfferenus between lebergue vensurable sets anl Baire neas. setz. In case of khesyue neassone, ouly a 99% lenura halds, so the last obseruction fails.

Cor (toon eqnivalences to BM). In a pertect Polith space X, every nonneagre $B M$ set contains a copy of $2^{\mathbb{N}}$.
Proof. A nonseagae $B M$ set $B \leq X$ is $=G \cup M$, shere G is lis $l M$ is mengre. By on optional How evercise, h_{1} is itself Polish (mh an equiv. netric) and is unctbl (bere X is pertect, heme atbl sets are noagre).

By the Cantor-Bearixson Themen, 6 contraiss a cops of 2^{N} -
Cor. $A C \Rightarrow$ there non-BM sets. In fant, the Berustein set is now-BM.
Proot the Berustein of is such tht it al its corplevent we bifh ot size extinncom hat don't coatair a copg of 2^{N}. One of them unast be noundeagre, herse won-bM by the previous corollang.

For a set $P \leq X$, uc nite $\forall_{x}^{*} \in X \underbrace{x \in P}: \Leftrightarrow P$ is coneagre.
$\underbrace{}_{x \text { satisties the property } P} P$
$\exists^{*} x \in X \quad x \in P: \Leftrightarrow P$ is nonmenge.
Observe nt $\neg \forall^{+} x \Leftrightarrow \exists^{*} x \neg$.
Kurctomsk: - Ulam theonen. Lt X, Y be $2^{\text {ad }}$ ctbl top. spaces. let $B \leqslant X \times Y$ be a $B M$ sabset.

(a) $\forall_{x \in}^{*} X\left(B_{x}\right.$ is $\left.B M\right)$ and $\left.\forall^{*}\right\} \in Y\left(B^{y}\right.$ is $\left.B M\right)$.
(b) B is weagre $\Leftrightarrow \forall^{*} x \in X\left(B_{k}\right.$ is meagre $)$

$$
\Leftrightarrow \forall^{*}, \in Y\left(B_{i}^{y}\right. \text { necryc). }
$$

Equiv: B is lonenge $\Leftrightarrow \forall^{*}(x, y) \in X \times Y$ $(x, y) \in B$

$$
\begin{array}{ll}
\Leftrightarrow \forall^{*} \\
\Leftrightarrow \in X \forall^{*} \\
\Leftrightarrow \forall^{*} \in Y & (x, y) \in B .
\end{array}
$$

Cor. Let X be a monergfy pertect Polish space, e-g. \mathbb{R}. There is uno Baise meas. (as a cubset of x^{2}) well-acher < of X. (< is a subset of X^{2} ?)

Def. A mell-order < on a net X is a Kinear (aka total) order on X s.t. everg no nempinty $Y \leq X$ has a $<$-lesest element. E.y. The ssual c on \mathbb{N}. The usual c on \mathbb{R} is ot a well-irder vead uare is ue lesst positice elenect.

